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Abstract: This paper describes an ACT-R model that learns and performs sequential 
actions and displays the skipping of steps under high workload. The model is part of 
a larger one that simulates the interaction between commercial airline pilots and the 
aircraft automation. Learning and performing scan patterns or procedures to 
program the flight management computer are examples for sequential actions in that 
domain. Errors occurring in the interaction with the automation often involve step-
skipping, particularly under high cognitive workload. The model assumes no special 
learning strategy, but uses two basic ACT-R learning mechanisms, baselevel 
learning and associative learning. In the test phase, the sequences emerge by 
symbolically unconstrained retrievals of the respective next steps. The skipping of 
steps depends on the relative influences of baselevel values and associative activation 
which change with the varying workload. Relations to extant models of the serial 
recall paradigm and implications for training are discussed. 

Introduction 

The model described in this paper originates in a project on the abatement of automation errors in 
commercial aircraft (Boehm-Davis, Schoppek, Diez, Hansberger, Holt, & Ikomi 2000). Increased 
air traffic has made the use of advanced automation systems essential to obtain the precision 
required in the crowded airspace. But the enhanced precision of these systems seems to come at the 
cost of new types of errors that occur in the interaction between pilots and the autoflight systems 
(Sarter & Woods, 1992; 1995). 

The main means for error reduction are improvements in training procedures and the design of 
automation devices. For both it is critical to understand the pilots' cognitive processes when they 
interact with the automation. Our approach combines cognitive task analysis with cognitive 
modeling of the pilots' behavior. The goal is to have a model that performs some important aspects 
of flying with the automation. Such a model will help to test assumptions about new ideas for error 
reduction much faster and cheaper compared to empirical testing alone, and more precisely than 
with verbal theories. 

Much of the behavior of pilots when they use the automation can be characterized as sequential 
action (Irving, Polson, & Irving, 1994). This holds for the visual scan patterns that have to be 
learned as well as for programming the Flight Management Computer (FMC). Although the 



performance of sequential action is only a part of the final model, it is important to have an 
appropriate submodel of that aspect. 

One type of error in the performance of sequences is the skipping of steps. Step-skipping can 
contribute to serious problems, e.g. incomplete scan patterns will result in an invalid representation 
of the situation, or a skipped step may lead to the FMC being misprogrammed. Step-skipping has 
been reported to be a particular problem in situations involving high cognitive workload (Sarter & 
Woods, 1992; Wiener, 1989; see also Wiegmann & Shappell, 1997, for a classification of human 
errors in 5008 aircraft accidents and incidents). 

The question that shall be addressed in this paper is how the learning of sequential action can be 
modeled such that the model displays step-skipping under the condition of high cognitive workload. 
I developed the model with the example of learning and performance of a scan pattern (a certain 
sequence in which a number of displays is processed). But the model may apply to learning and 
performance of sequential action in general. 

ACT-R model 

We chose to build the model in ACT-R (Anderson & Lebiere, 1998), because of the advantages of 
using a unified cognitive architecture, as e.g. the broad empirical basis of the basic assumptions, or 
the comparability with other models. ACT-R 4.0 is a production system featuring declarative and 
procedural knowledge. The declarative memory elements - called chunks - are typed structures with 
slots that can be filled with other chunks, thus establishing a network of declarative knowledge. 
Production rules operate on declarative memory. ACT-R assumes a goal stack whose top element 
can be viewed as the focus of attention. The elements of the goal chunk are sources of activation 
which spreads into the network of declarative memory. The activation of a chunk reflects the 
probability that it is needed in the current context and determines its retrieval. Two learning 
mechanisms change this probability. One is baselevel learning which changes the baselevel value of 
a chunk as a function of its use history. The more frequently and the more recently a chunk has 
been used, the higher is its baselevel value. The second mechanism is associative learning. 
Associative weights (sji) between two chunks i and j are updated when chunk j is an element of the 
goal (and thus, a source of activation) while chunk i is retrieved from memory. The sji value 
depends, among other things, on how often chunk i is also retrieved in other contexts, and on the 
number of other contexts where chunk j is element of the goal while chunk i is not retrieved. 

The task that was modeled begins with a supervised learning phase where the model is instructed to 
scan six displays, named A, B, C, D, E, and F, in alphabetical order. When the model asks for a 
place to look, a look command is provided, and the model follows that command. It recognizes the 
display, reads the displayed value, and memorizes the value. Then the model asks for the next place 
to look. In a test phase, the model performs scans without external hints. 

One prerequisite for the model is that it has to store information about the sequence of steps. Two 
basic solutions for that are to establish symbolic links between consecutive steps, and to link them 
associatively. Symbolic linking results in non-ambiguous representations of given sequences, which 
makes it hard to model step-skipping without assumptions about how symbolic links are sometimes 
bypassed. There is no need for additional assumptions such as partial matching if associative links 
are used. Furthermore, as associative learning is already part of the ACT-R theory, it needs not to 
be modeled explicitly. A model that just uses the learning mechanisms of the architecture would be 
a more general one. Therefore I decided to use associations to represent sequence information. It 
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will be interesting to see, how the model exceeds simple chaining models, which have been 
criticized for being unable to display the properties of memory for sequential order (Brown, 1997). 

So far, the model would basically predict associative learning of sequences. In order to model the 
skipping of steps depending on workload, an additional assumption is necessary. I assume that 
some of the scans in the learning phase are fragmentary, too. This results in additional associations 
that deviate from the sequential structure and in lower baselevel values for the skipped steps. The 
question why steps might be skipped in the learning phase - inadvertently, or as a part of the 
training - will be discussed in the final section. 

A further assumption that had to be determined was how to model workload. A central aspect of 
workload is the intensive use of working memory. High working memory load results when much 
information must be kept active (Miyake & Shaw, 1999). In ACT-R, working memory content is 
defined as the highly activated part of declarative memory. The main process that mediates this 
activation is the spread of source activation (Lovett, Reder, & Lebiere, 1999). Sources of 
activation are all chunks in the slots of the current goal. As the total source activation in ACT-R is 
limited to a constant value W, it is divided by the number of chunks in the goal. The more chunks 
are in the goal, the less source activation each can spread. Put briefly, working memory load varies 
with the number of chunks that are in the goal. To simulate high workload, I filled some slots of the 
goal with additional chunks that were not related to the scanning task. These slots were empty in 
the low workload condition. 

The following sections describe the model in more detail1. The model's declarative memory 
contains representations of the six displays (A - F), representations of "look commands" that guide 
the model to look at the appropriate place in the environment, and representations of the displayed 
values. Additionally, there are chunks representing "other information" which are used to simulate 
workload and are otherwise meaningless in the current model. 

The chunk type used for the displays has two slots: One for the look command that guides the 
attention to the display, and one for the value shown by the display. The chunk type for the look 
commands stores the display that shall be scanned by that command in its only slot. The chunk 
type used for the goal is defined as follows: 

(chunk-type main-goal focus step result context d1 d2 d3)


The focus slot contains either the look command or the representation of the display that is read. 
The perceived value is stored in the result slot. The context slot contains a chunk denoting the 
context. In the simulations presented here, this chunk is a constant, but the slot can be used to 
simulate different contexts. The slots d1, d2, and d3 are used to simulate different workload 
conditions. 

A learning trial begins with the chunk start in the step slot of the goal. The production 
get-look asks for a place to look. The look command is then provided and filled into the step 
slot of the goal. The next production learn-look retrieves the memory representation of the 
command, moves it to the focus slot, and sets the step slot to nil. Production exec-look then 
looks at the place stored in the look command. The two following productions process the display 
and the displayed value, and return the goal with the representation of the display in its focus slot 
and a command to ask for the next place to look. The production get-look then starts a new 
cycle. 

1 Words denoting ACT-R elements such as chunks and production rules are printed in courier new. 
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The critical step for learning associations that can be used later takes place when the new look 
command is retrieved while the last display is still in the focus. This is illustrated with the 
production rules shown in table 1. The rule on the left retrieves the look command =comm which is 
already element of the goal chunk, because it was provided externally. For example, if =display 
is display-A and =comm is look-B, then the association between display-A and look-
B is strengthened when look-B is retrieved. Processing in the test phase is very similar to that in 
the learning phase, except that the next place to look is not provided externally. 

insert table 1 here 

It is very important to note that the retrieval of the look command is not symbolically constrained 
in the production retrieve-step. This means that the most active look command is retrieved 
from memory. However, it is quite likely to retrieve the look commands in the learned sequence. 
Suppose for example, that display A has just been processed so that display-A is still in the 
focus. In this situation, display-A spreads activation to look-B via the associative link 
learned earlier, raising the probability of retrieving look-B. 

Simulated Experiment 

The influence of the factor workload was investigated in a simulated experiment with 40 simulation 
runs. The ACT-R parameters were set as follows: baselevel-learning = 0.5 (default), associative-
learning = 5.0, activation-noise-s = 0.05, partial-matching = off, all other parameters had their 
default values. In the low workload condition, the three slots d1, d2, and d3 were empty. In the 
high workload condition, they were filled with chunks. These chunks had been used in the learning 
phase already, but in a counterbalanced order, so that they had rather low and similar associations 
with all steps of the sequence. 

The environment of the model consisted of four displays A, B, C, D, E, and F. In the learning 
phase, the model was advised to scan these displays in alphabetical order. However, in one third of 
the learning trials, the model was advised to scan only a subset of the displays. It was the sequence 
A-B-D-F. The learning phase comprised 18 complete and 9 reduced sequences in alternate order, 
with simulated breaks between the trials. In the test phase, the model performed four scans, two for 
each workload condition. As dependent measures, I classified the resulting scans as shown in figure 
1, and counted how often each display was left out in a scan. 

insert figure 1 here 

In the condition with low workload, 82% of the scans were performed completely in the correct 
order (ABCDEF). This was only true for 28% of the scans in the high workload condition. In that 
condition, a range of different patterns occurred, most of them characterized by the skipping of one 
step (ABDEF: 15%, ABCDF: 18%), or two steps (ABDF: 20%). Unexpectedly, there were 20% of 
longer patterns. Many of these include a jump back to display A somewhere during the scan, some 
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include a jump back to B, and a few contain even two jumps back. There was never more than one 
step skipped under low workload. 

Figure 2 shows the aggregated proportions of which steps were skipped in all scan patterns. Apart 
from two exceptions, only the steps C and E were skipped, about equally often. This shows that the 
skipping of steps in the high workload condition is not just due to noise, but closely reflects what 
has been done in the learning phase. 

insert figure 2 here 

To understand the behavior of the model, it is helpful to have a look at the resulting baselevel and 
sji values which are indicated by light and bold boxes and lines in figure 3. At the end of the 
learning phase, there are strong associative links between the displays and the look commands that 
guide attention to the following display. Weaker associations have been learned between B and 
look-D, and D and look-F, because these transitions occurred less often. The baselevels of 
look-C and look-E are lower than those of the other look commands, because they were used 
less often. 

insert figure 3 here 

Now let us look at the point when display B has just been processed and the model tries to retrieve 
the next step. B spreads activation to look-C, but also to look-D. Suppose there is no noise. If 
baselevel activation alone would determine the retrieval of a chunk, look-D would always be 
retrieved in that situation, because its baselevel value is higher than that of look-C. If associative 
activation alone would determine retrieval, look-C would always be retrieved, because it is 
stronger activated by the source B than look-D. Source spread is lower under conditions of high 
workload, because source activation is divided between more elements. Therefore, under that 
condition, the proportion of baselevel activation in the total activation is high enough to raise the 
total activation of look-D slightly above that of look-C. Under low workload, the relative 
influence of source spread is higher, resulting in a higher total activation of look-C. 

Discussion 

The model predicts the selective skipping of steps of a scan pattern depending on workload 
conditions. This is achieved with very few model specific assumptions. One of them is that in the 
learning phase not only the whole sequence is practiced, but also a reduced one. Most of the 
model's behavior arises from the underlying architecture. In essence, it demonstrates the relative 
influences of two independent learning mechanisms - baselevel learning and associative learning -
under different circumstances. As the influence of associative learning diminishes with decreasing 
source activation, the relative influence of baselevel activation increases. This basic mechanism 
generally predicts that effects based on associations weaken with increasing workload. 
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The scanning task modeled here partially resembles serial recall paradigms for which several 
models have been proposed. These models have to predict a wide range of phenomena which can 
not be explained by chaining models that only assume the learning of pairwise associations 
between consecutive items (Brown, 1997). It is important to note that the present model is not a 
simple chaining model, but in fact, incorporates many of the mechanisms used in the more 
sophisticated models of serial memory. Again, most of them arise from the inherent properties of 
the architecture. The finding that memory for the items is independent of memory for the order 
maps well onto the distinction between baselevel learning and associative learning, with the first 
process accounting for item learning and the second for sequence learning. Further, as in context-
based models (Houghton, 1990), the last step is not the only one that helps to find the next step. 
Almost naturally in ACT-R models, some context information is stored in the slots of the goal-
chunk that adds source activation useful to determine the correct next step. 

Some models of serial recall entail the inhibition of the last retrieved item in order to avoid 
perseveration (Houghton, 1990; Burgess & Hitch, 1992). In the present model, perseveration is 
prevented by two features. The first is that the critical association is not learned between items of 
the same type. Since the only constraint for the associative retrieval is the chunk type, using a 
chunk of a different type as the main retrieval cue impedes the repeated retrieval of the highly 
activated cue. In my model, the critical positive associations are learned between the display and 
the next step. Additionally, a negative association between the display and the current step is 
learned, because the look command guiding the look to a display is never retrieved while the 
display itself is in the focus (e.g. look-B is never retrieved while display-B is in the focus). 

There is another problem with associations when the same step occurs in several sequences, at each 
case followed by a different next step. If the associations with the competing steps are equally 
strong, a chunk that represents the context and spreads source activation to the right step can 
deliver the decisive information. This mechanism proved to be successful in explorative simulations 
with the model. It fails, however, in situations where the associations between the current and the 
competing next steps are highly unequal. In that case, the problem can be solved by using separate 
chunks for the same step in each context with the command itself bound in a slot. 

Finally, let me return to the applied starting-point. If one accepts that the model reflects some basic 
properties of the learning of sequential action, it follows that students should not be left without 
guidance unless they are sure to perform the entire sequence of steps correctly. This is because 
inadvertent step-skipping will contribute to the learning result. Particularly at the beginning of the 
training, when associations and baselevels have not yet stabilized, erroneous skipping of steps 
tends to be maintained. If it is important to perform an entire sequence under all conditions, as e.g. 
in FMC programming, step-skipping in the learning phase involves an inherent danger that may 
take a lot of training to overcome. 

In some cases, however, it might be desirable to skip steps depending on the situation, e.g. to save 
time. In that case the reduced pattern should be trained beside the complete pattern. In high 
workload situations, the less trained steps would then be skipped automatically. The emergence of 
the appropriate pattern can additionally be supported by emphasizing discriminative context cues 
which will contribute to the retrieval of the right steps by adding decisive activation. 

Probably, the described effects are not the only reason why pilots miss pieces of information during 
busy phases of flight. Another opportunity for making such errors is when temporarily displayed 
information is not noticed because pilots are preoccupied with other things. However, the virtue of 
the model is that it points to a less obvious source of potential errors and has clear implications for 
training. 
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condition 
part 

action 
part 

(p learn-look

=goal>


isa learn-goal

focus =display

step =comm


=comm>

isa command


==>

=goal>


focus =comm

step nil)


(p retrieve-look

=goal>

isa main-goal

focus =display 

step nil


=comm>

isa command


==>

=goal>


focus =comm

step nil)


Table 1: Production rules that retrieve the look command in the learning phase and in the test 
phase. In the production learn-look, the look-command (=comm) is already element of the 
goal chunk because it was provided externally. This command is then retrieved and moved to the 
focus slot of the goal. In the production retrieve-look, the retrieval of the look command 
is not symbolically constrained. 
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Distribution of Scan Patterns 
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Figure 1: Distribution of the resulting scan patterns under low and high workload. "Shorter" means 
that the pattern was shorter than four steps, "longer" means that it was longer than six steps. 

Skipped Steps 

50 
45 
40 
35 
30 
25 
20 
15 
10 

Low 

High 

5 
0 

A B C D E F 

Figure 2: Steps that were skipped under low and high workload. For each step the proportion of 
scans in which that step was skipped is indicated. 
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baselevel < 1.0 sji < 2.0 
baselevel ‡ 1.0 sji ‡ 2.0 

sji < 0.0 

Figure 3: Selected baselevel values and associative weights between representations of displays and 
look commands at the end of the learning phase. Bold lines or boxes denote higher associations or 
higher baselevels, dashed lines denote negative associations. 
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